ZEMELMAN, BORIS V.

Boris Zemelman

Assistant Professor
Department of Neuroscience


The role of hippocampal microcircuits in memory formation and recall.

zemelmanb@mail.clm.utexas.edu

Phone: 512-232-6364

Office Location
NHB 3.116

Postal Address
The University of Texas at Austin
Department of Neuroscience, College of Natural Sciences
1 University Station C7000
Austin, TX 78712

Education:

MIT: BS Biology

Stanford: PhD Biochemistry

Memorial Sloan-Kettering Cancer Center: Postdoctoral

 

Research Summary:

We strive to understand the role of hippocampus in memory formation by manipulating its functional elements, namely the assemblies of cells that carry out particular tasks. This objective raises four practical questions. How are such assemblies to be defined? How can they be accessed? How might their activity be perturbed? And how should the resulting change in the system be detected and evaluated? Hippocampal neurons are organized into three broad classes: excitatory, inhibitory and modulatory. In some cases, the classes can be subdivided further, on the basis of neurochemical markers, mainly calcium binding proteins and neurotransmitters. We work in mice, using these differences in the complement of expressed proteins to target specific cell populations. As an alternative, we are testing several new genetic approaches designed to identify and access neurons displaying heightened activity during memory tasks. Selected neurons are sensitized to subsequent manipulation using a variety of heterologous receptors and ion channels. We then evaluate the effects of cell-type specific optical or pharmacological perturbation on hippocampal circuit dynamics (using awake 2-photon imaging and in vitro electrophysiology) and on animals' memory functions (using behavioral assays).

  • Zemelman BV, Chu SH, Walker WA. Host response to Escherichia coli heat-labile enterotoxin via two microvillus membrane receptors in the rat intestine. Infect Immun. 1989;57:2947-52. PMID: 2674013
  • Zemelman BV, Walker WA, Chu SH. Expression and developmental regulation of Na+,K+ adenosine triphosphatase in the rat small intestine. J Clin Invest. 1992;90:1016-22. PMID: 1325991
  • Brook JD, Zemelman BV, Hadingham K, Siciliano MJ, Crow S, Harley HG, Rundle SA, Buxton J, Johnson K, Almond JW, et al. Radiation-reduced hybrids for the myotonic dystrophy locus. Genomics. 1992;13:243-50. PMID: 1612584
  • Brook JD, McCurrach ME, Harley HG, Buckler AJ, Church D, Aburatani H, Hunter K, Stanton VP, Thirion JP, Hudson T, Sohn R, Zemelman BV, et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3' end of a transcript encoding a protein kinase family member. Cell. 1992; 68:799-808. PMID: 1568252
  • Bruckner RC, Dutch RE, Zemelman BV, Mocarski ES, Lehman IR. Recombination In vitro between herpes simplex virus type 1 a sequences. Proc Natl Acad Sci U S A. 1992;89:10950-10954. PMID: 1332062
  • Dutch RE, Zemelman BV, Lehman IR. Herpes simplex virus type 1 recombination: the Uc-DR1 region is responsible for the recombinogenic nature of the viral a sequences. J Virology. 1994;68:3733-3741. PMID: 8189511
  • Weber T, Zemelman BV*, McNew JA*, Westermann B, Gmachl M, Parlati F, Sollner TH, Rothman JE. SNAREpins: minimal machinery for membrane fusion. Cell. 1998;92:759-772. PMID: 9529252
  • McNew JA, Coe JG, Sogaard M, Zemelman BV, Wimmer C, Hong W, Sollner TH. Gos1p, a Saccharomyces cerevisiae SNARE protein involved in Golgi transport. FEBS Lett. 1998;435:89-95. PMID: 9755865
  • De Angelis DA, Miesenböck G, Zemelman BV, Rothman JE. PRIM: Proximity imaging of green fluorescent protein-tagged polypeptides. Proc Natl Acad Sci U S A. 1998;95:12312-16. PMID: 9770483
  • Zemelman BV, Miesenböck G. Genetic schemes and schemata in neurophysiology. Curr Opin Neurobiol. 2001;11:409-14. PMID: 11502385
  • Zemelman BV, Lee GA, Ng M, Miesenböck G. Selective photostimulation of genetically chARGed neurons. Neuron. 2002;33:15-22. PMID: 11779476
  • Huang KJ, Zemelman BV, Lehman IR. Endonuclease G, a candidate human enzyme for the initiation of genomic inversion in herpes simplex type 1 virus. J Biol Chem. 2002;277:21071-9. PMID: 11912214
  • Ng M, Roorda RD, Lima SQ, Zemelman BV, Morcillo P, Miesenböck G. Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron. 2002;36:463-74. PMID: 12408848
  • Zemelman BV, Nesnas N, Lee GA, Miesenböck G. Photochemical gating of heterologous ion channels: Remote control over genetically designated populations of neurons. Proc Natl Acad Sci USA. 2003;100:1352-7. PMID: 12540832
  • Varga V*, Losonczy A*, Zemelman BV*, Borhegyi Z, Nyiri G, Domonkos A, Hangya B, Holderith N, Magee J and Freund T. Fast synaptic activation of hippocampal circuits by subcortical serotonergic and glutamatergic inputs. Science. 2009;326:449-53. PMID: 19833972
  • Losonczy A*, Zemelman BV*, Vaziri A and Magee J. Network mechanisms of theta-related neuronal activity in hippocampal CA1 pyramidal neurons. Nature Neuroscience. 2010;13:967-72. PMID: 20639875
  • Andrasfalvy B, Zemelman BV, Tang J and Vaziri A. Two-photon optogenetic control of neural activity with single cell resolution by sculpted light. Proc Natl Acad Sci USA. 2010;107:11981-6. PMID: 20543137
  • Royer S, Zemelman BV, Barbic M, Losonczy A, Buzsáki G and Magee J. Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal. Eur J Neurosci. 2010;31:2279-91. PMID: 20529127
  • Kätzel D, Zemelman BV, Buetfering C, Wölfel M, Miesenböck G. The columnar and laminar organization of inhibitory connections to neocortical excitatory cells. Nature Neuroscience. 2011;14:100-7. PMID: 21076426
  • Borghuis BG, Tian L, Xu Y, Nikonov SS, Vardi N, Zemelman BV, Looger LL. Imaging light responses of targeted neuron populations in the rodent retina. J Neuroscience. 2011;31:2855-67. PMID: 21414907
  • Lovett-Barron M, Turi GF, Kaifosh P, Lee PH, Bolze F, Sun X-H, Nicoud J-F, Zemelman BV, Sternson SM and Losonczy A. Regulation of neuronal input output transformation by tunable dendritic inhibition. Nature Neuroscience. 2012;15:423-430. PMID: 22246433
  • Royer S, Zemelman BV, Losonczy A, Kim J, Chance F, Magee J and Buzsáki G. Control of timing, rate and    firing patterns of hippocampal place cells by dendritic and perisomatic inhibition. Nature Neuroscience. 2012;15:769-775. PMID: 22446878
  • Lovett-Barron M, Kaifosh P, Khierbek MA, Danielson N, Zaremba J, ReardonTR, Turi GF, Hen R, Zemelman BV and Losonczy A. Dendritic Inhibition in the Hippocampus Supports Fear Learning. Science. 2014;343:857-63. PMID: 24558155
  • Andoni S, Zemelman BV, and Priebe NJ. Thalamocortical Phase Coupling During Spontaneous and Stimulus-evoked Activity in the Visual System (Submitted)
  • Workman ER, HaddickPCG, ZemelmanBV, and Raab-Graham KF. Rapid Antidepressant Stimulates Decoupling of GABABR from GIRK/Kir3 through 14-3-3η (Submitted)